
Treehouse tETH
Security Assessment

October 3, 2024

Prepared for:

Ben Loh
Treehouse Finance

Prepared by: Alexander Remie



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Treehouse tETH Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Treehouse
under the terms of the project statement of work and has been made public at Treehouse’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Treehouse tETH Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Goals 7
Project Targets 8
Project Coverage 9
Codebase Maturity Evaluation 11
Summary of Findings 14
Detailed Findings 15

1. Anyone can steal wstETH tokens accidentally transferred to the TreehouseRouter
contract 15
2. Underlying tokens can be “rescued” 17
3. WstEth.wrap expects stETH amount instead of ETH amount 19
4. Single-asset vault is not a single-asset vault 20
5. Dangerous storage variable in Strategy contract due to use of delegatecall 21
6. Missing return value check can lead to incorrect event emission 23

A. Vulnerability Categories 25
B. Code Maturity Categories 27
C. Code Quality Recommendations 29
D. Fix Review Results 32

Detailed Fix Review Results 33

Trail of Bits 3 Treehouse tETH Security Assessment
PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering directors were associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Alexander Remie, Consultant
alexander.remie@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 17, 2024 Report readout meeting

October 3, 2024 Delivery of comprehensive report

Trail of Bits 4 Treehouse tETH Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:alexander.remie@trailofbits.com


Executive Summary

Engagement Overview
Treehouse engaged Trail of Bits to review the security of its tETH contracts. tETH is a liquid
restaking token that serves to converge the fragmented on-chain ETH interest rates
market. Holders of tETH earn yield through interest rate arbitrage while still being able to
use tETH for DeFi activities.

This assessment is a continuation of a previous assessment conducted by Trail of Bits in
July 2024. A single consultant from the blockchain team conducted a review focusing on the
smart contracts from September 3 to September 13, 2024, for a total of two
engineer-weeks of effort. Our testing efforts focused the identification of flaws that could
result in a compromise of confidentiality, integrity, or availability of the target systems. We
conducted this audit with full knowledge of the system. With full access to source code and
documentation, we performed static and dynamic testing of the smart contracts, using
automated and manual processes.

Observations and Impact
The tETH smart contracts heavily rely on privileged actors to manually perform necessary
operations; these include operations related to PnL distribution, funding the redemption
contract to enable user withdrawals, updates to state variables that directly impact users’
solvency and funds, and investments into and divestments from strategies.

Additionally, we identified one issue that allows anyone to steal wstEth that was
accidentally transferred to the TreehouseRouter contract. This is because a function in
the contract returns the wrong amount to indicate the amount of wstEth that belongs to
the caller when making a deposit (TOB-TETH-1). We also highlighted one dangerous use of
a storage variable in a contract that uses delegatecalls; this issue could lead to loss of funds
when new actions are implemented and enabled in the future (TOB-TETH-5).

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the Treehouse team take the following steps prior to
achieving deployment:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Identify all system properties that are expected to hold, and use dynamic
end-to-end fuzz testing to validate those system properties.

Trail of Bits 5 Treehouse tETH Security Assessment
PUBLIC



Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 2

Low 0

Informational 4

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Configuration 1

Data Validation 2

Undefined Behavior 3

Trail of Bits 6 Treehouse tETH Security Assessment
PUBLIC



Project Goals

The engagement was scoped to provide a security assessment of the tETH protocol.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Does the use of delegatecall for executing actions pose a (future) risk to the system?

● Is the conversion between the different currencies implemented correctly?

● Is the vault implemented as a single-asset vault?

● Can IAU tokens be transferred freely?

● Are all functions protected by adequate access controls?

● Are there missing events?

● Are all function inputs validated?

● Can someone steal tokens from the protocol?

● Is the parameter-replace mechanism implemented correctly?

● Can the deposit cap be circumvented?

● Are sufficient protections present to prevent tokens in the protocol’s accounting
from being rescued?

Trail of Bits 7 Treehouse tETH Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

tETH protocol
Repository https://github.com/0xhypn/tETH-protocol

Version 60c4c39c800d280057fefe2ce1945f61c0dc795d

Type Solidity

Platform EVM

Trail of Bits 8 Treehouse tETH Security Assessment
PUBLIC



Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following contracts:

● TreehouseRouter: We used manual review to look for flaws in the deposit
mechanism; flaws in the functions that convert between the ETH, stETH, and wstETH
currencies; missing pausing-related modifiers; missing or incorrect access controls;
unsafe ERC20 transfer functions; incorrect setup of the contract during deployment
(i.e., the constructor); ways to circumvent the “allowable assets” mechanism; ways to
circumvent the deposit cap; and ways to steal the infinite
InternalAccountingUnit and stETH token approvals.

● TAsset: We manually reviewed the implementation to look for missing events,
missing or incorrect input validation, donation attack vectors, flaws in the overriding
of ERC20 functions, incorrect access controls, and incorrect contract construction
during deployment.

● TreehouseRedemption: We manually reviewed the contract to look for missing or
incorrect access controls, flaws in the token transfers, incorrect state updates,
unexpected overflows leading to a revert, missing events, missing or insufficient
validation of input data, missing pausing-related modifiers, reentrancy
vulnerabilities, and ways to be able to extract more tokens than should be possible.

● TreeHouseAccounting: We used manual review to look for missing events, missing
or incorrect access controls, missing or insufficient validation of input data, incorrect
interactions with the InternalAccountingUnit contract and TAsset contracts,
and ways to steal the infinite InternalAccountingUnit token approval.

● InternalAccountingUnit. We used manual review to look for incorrect access
controls and flaws in the overridden ERC20 functions _update and _checkOwner.

● strategy/ contracts: We manually reviewed the implementation of all of the
various action contracts to look for flaws related to input validation, incorrect
argument/return value passing, flaws in the logic, and flaws in the integration with
external protocols (Lido and Aave). Regarding contracts that are not a specific
action, we assessed whether the use of a (double) delegatecall could be used to
steal tokens or otherwise cause problems for the tETH protocol, missing or incorrect
access controls, missing events, missing pausing-related modifiers, flaws in the
inline assembly that is used to perform delegatecalls, missing validation in the
action registry system used for adding/replacing action contracts, flaws in the
replaceable-parameter mechanism, and flaws caused by the action-contract-id
mechanism.

Trail of Bits 9 Treehouse tETH Security Assessment
PUBLIC



● rate-providers/ contracts: We manually reviewed these contracts to look for
missing events, missing or incorrect access controls, flaws in the conversion of
different rates, and whether it is possible for users to register their own rate
provider.

● periphery/ contracts: We used manual review to look for missing events, missing
or incorrect access controls, reentrancy vulnerabilities, unsafe ERC20 transfer
functions, flawed in the internal accounting, ways to make the system allow
unsupported tokens, and flaws in the handling of prices with different numbers of
decimals.

● libs/ contracts: We used manual review to assess whether the assigned contract
owner can rescue tokens that should not be rescuable. We looked for missing or
incorrect access controls and missing events. We looked for ways that a denylisted
address can circumvent this restriction.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Issues found in previous audits were considered out of scope.

● The offchain component(s) of this system were considered out of scope.

● We did not review the high-level economic incentives and disincentives imposed by
the system.

● We did not look for front-running vulnerabilities.

Trail of Bits 10 Treehouse tETH Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The protocol uses Solidity 0.8.24, which has overflow
protection by default for arithmetic operations. Most of
the operations are documented with inline
documentation. Asset calculations rely on the
assumption that the dollar value of stETH will always be
equal to ETH; this could introduce accounting issues if
stETH depegs (TOB-TETH-3). Additionally, we found an
issue where the wrong numerical value is returned,
allowing any accidentally transferred wstETH to be stolen
by any account through the router contract
(TOB-TETH-1).

Satisfactory

Auditing All functions involved in critical state-changing operations
emit events. The codebase uses a wide variety of
informative events and error messages, which are
emitted at appropriate locations. We did identify one
issue where an event may contain duplicate values
(TOB-TETH-6).

Satisfactory

Authentication /
Access Controls

Most functions within the contracts are restricted by
access controls that permit only privileged actors to
execute them. Users have limited control, primarily
restricted to deposits, creating and canceling redemption
requests, and finalizing redemptions. Given the presence
of multiple privileged actors performing different roles, it
would be beneficial to document these roles and the
actions they are authorized to perform.

Moderate

Complexity
Management

The smart contract codebase contains a significant
number of contracts; however, they are easy enough to
reason through, and most of the complexity is left to be
handled by the strategy manager via the off-chain

Satisfactory

Trail of Bits 11 Treehouse tETH Security Assessment
PUBLIC



components. Each contract in the protocol has a clear
purpose, and there are no signs of excessive inheritance
or high cyclomatic complexity. All functions are concise
and well documented, have a clear purpose, and are
appropriately tested.

Unlike what the Treehouse team expressed, the Vault is
not a single-asset vault. This does not pose an immediate
security risk but does increase the complexity of the
Vault (TOB-TETH-4).

Decentralization The system’s operations depend on certain privileged
actors manually executing essential tasks (via off-chain
executions). These tasks include operations related to
profit and loss distribution, user withdrawals, updating
state variables affecting user solvency and funds, and
managing investments and divestments. Due to the
extensible nature of the portfolio management system,
privileged actors can perform arbitrary actions.
Additionally, the Rescuable contract includes a
provision that allows the retrieval of any uninvested
funds from the Vault (TOB-TETH-2).

Weak

Documentation The code is generally well commented using NatSpec
style. The supplied documentation regarding the system
design, architecture, and descriptions of the onchain and
offchain components are generally sufficient.

Strong

Low-Level
Manipulation

The use of double delegatecall in the strategy flow raises
concerns, as it could potentially lead to unintended
consequences, such as inadvertently corrupting storage
when more advanced strategies are developed
(TOB-TETH-5). It is advisable to establish guidelines for
writing delegatecalls to prevent such issues. Additionally,
the use of assembly is currently limited to executing
delegatecalls.

Moderate

Testing and
Verification

The smart contract codebase contains several unit and
integration tests. These tests appear to cover the
protocol’s most common use cases and test a fair
number of potential reverts or other scenarios outside of
the “happy path.”

However, there is no targeted fuzz testing of arithmetic

Moderate

Trail of Bits 12 Treehouse tETH Security Assessment
PUBLIC



operations, invariants, or function properties.
Furthermore, there is no mutation testing. These
methodologies can expose unforeseen edge cases or
anomalies that regular testing might miss. Fuzzing
involves testing with random data inputs to trigger
unhandled exceptions or crashes, while mutation testing,
a method of code quality validation, alters the software
code in small ways to assess whether the test cases can
distinguish the original code from the mutated one.

Implementing these methodologies can help ensure the
resistance of the application against potential unusual
inputs or behaviors.

Transaction
Ordering

Yield aggregator protocols in general are vulnerable to
front-running issues, especially during profit harvesting;
the codebase should undergo a more in-depth review to
find these vulnerabilities.

Further
Investigation
Required

Trail of Bits 13 Treehouse tETH Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Anyone can steal wstETH tokens accidentally
transferred to the TreehouseRouter contract

Undefined
Behavior

Medium

2 Underlying tokens can be “rescued” Data Validation Medium

3 WstEth.wrap expects stETH amount instead of
ETH amount

Undefined
Behavior

Informational

4 Single-asset vault is not a single-asset vault Configuration Informational

5 Dangerous storage variable in Strategy contract
due to use of delegatecall

Undefined
Behavior

Informational

6 Missing return value check can lead to incorrect
event emission

Data Validation Informational

Trail of Bits 14 Treehouse tETH Security Assessment
PUBLIC



Detailed Findings

1. Anyone can steal wstETH tokens accidentally transferred to the
TreehouseRouter contract

Severity: Medium Difficulty: High

Type: Undefined Behavior Finding ID: TOB-TETH-1

Target: contracts/TreehouseRouter.sol

Description
The _stethToWsteth function returns the contract’s balance of wstETH tokens instead of
the value returned from the WstEth.wrap function. As a result, the returned value
includes any wstETH that was accidentally transferred to the TreehouseRouter contract.

169 function _stethToWsteth(uint amount) private returns (uint) {
170 IwstETH(payable(wstETH)).wrap(amount);
171 return IERC20(wstETH).balanceOf(address(this));
172 }

Figure 1.1: The _stethToWsteth function in TreehouseRouter.sol

The TreehouseRouter.depositEth function calls the _ethToWsteth function. This
function first deposits the ETH into the StEth (=Lido) contract, and then the ETH amount
is passed into the _stethToWsteth function. The _stethToWsteth function will call the
WstEth.wrap function, which will use safeTransferFrom to transfer the stETH tokens
into the WstEth contract, which will calculate and convert that amount of stETH tokens to
wstETH tokens. At the end of the WstEth.wrap function, the amount of wstETH that was
calculated and minted to the caller (=TreehouseRouter) is returned.

53 function wrap(uint256 _stETHAmount) external returns (uint256) {
54 require(_stETHAmount > 0, "wstETH: can't wrap zero stETH");
55 uint256 wstETHAmount = stETH.getSharesByPooledEth(_stETHAmount);
56 _mint(msg.sender, wstETHAmount);
57 stETH.transferFrom(msg.sender, address(this), _stETHAmount);
58 return wstETHAmount;
59 }

Figure 1.2: The wrap function in WstEth.sol

To deal with tokens that were accidentally transferred to the TreehouseRouter contract,
the TreehouseRouter contract inherits the Rescuable contract, which allows a privileged

Trail of Bits 15 Treehouse tETH Security Assessment
PUBLIC

https://github.com/lidofinance/lido-dao/blob/a9a9ea50b5be7dba33e06d70cc068252ffd01b52/contracts/0.6.12/WstETH.sol#L53-L59


account to withdraw accidentally transferred tokens. Due to the above-described issue, any
account could front-run such calls to sweep any of the accidentally transferred wstEth
tokens from the TreehouseRouter contract.

Exploit Scenario
Alice accidentally transfers wstETH tokens directly to the TreehouseRouter contract. Eve
detects this and calls the deposit function immediately after Alice’s transaction. Eve’s
deposit now also includes Alice’s accidentally transferred wstETH tokens.

Recommendations
Short term, update the _stethToWsteth function so that it returns the value returned
from the WstEth.wrap call. This ensures that no accidentally transferred wstETH tokens
can be stolen (they can, however, be “rescued” to return them to whoever accidentally
transferred them into the TreehouseRouter contract).

Long term, when interacting with external protocols, ensure that the integration is correct
by verifying that all of the correct input arguments are passed in and that the return
arguments are used correctly and not ignored.

Trail of Bits 16 Treehouse tETH Security Assessment
PUBLIC



2. Underlying tokens can be “rescued”

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-TETH-2

Target: contracts/libs/Rescuable.sol, contracts/TreehouseRedemption.sol,
contracts/Vault.sol, contracts/TreehouseRouter.sol

Description
Contracts that inherit the Rescuable contract do not override its implementation to
exclude tokens that are part of the protocol and should not be “rescuable.” This allows the
privileged role in charge of “rescuing” tokens to withdraw underlying tokens. Note that this
role is privileged (i.e., controlled by the Treehouse team), and this scenario is therefore
unlikely to happen.

The TreehouseRedemption, TreehouseRouter, and Vault contracts all inherit the
Rescuable contract so the Treehouse team can withdraw (i.e., “rescue”) any tokens that
accidentally were transferred to these contracts. Although this is a wise safety precaution
to prevent people from losing tokens that were transferred incorrectly, if not protected
accordingly, this allows a privileged actor to withdraw user assets that were not accidentally
transferred to the protocol.

For example, the TreehouseRedemption contract is used for redemptions in a two-stage
process. After the first stage TAsset tokens will be held in the TreehouseRedemption
contract. After a seven-day delay, the second stage can be executed, which will result in
actually redeeming the TAsset tokens for the underlying tokens and transferring those to
the caller. The TAsset tokens should therefore not be rescuable in the
TreehouseRedemption contract since that allows them to be “rescued” after stage 1 but
before stage 2.

Exploit Scenario
The rescuer account in the TreehouseRedemption contract is taken over by an attacker.
The attacker waits for a call to redeem and immediately backruns it by calling
rescueERC20 to steal all of the TAsset tokens.

Recommendations
Short term, inside the TreehouseRedemption, TreehouseRouter, and Vault contracts,
override the Rescuable functions so that, depending on the contract, certain tokens can
be made non-rescuable.

Trail of Bits 17 Treehouse tETH Security Assessment
PUBLIC



Long term, when privileged actors can control tokens owned by protocol users, always
account for the possibility that such privileged actors may lose access to their accounts or
become rogue. Design and implement the system to remain robust in case this happens so
that user assets stay safe.

Trail of Bits 18 Treehouse tETH Security Assessment
PUBLIC



3. WstEth.wrap expects stETH amount instead of ETH amount

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-TETH-3

Target: contracts/TreehouseRouter.sol

Description
The _ethToWstEth function passes in the ETH amount instead of the stETH amount into
the _stethToWstEth function. This could result in an incorrect amount in the unlikely
event that stETH depegs from ETH.

164 function _ethToWsteth(uint amount) private returns (uint) {
165 IstETH(stETH).submit{ value: amount }(address(0));
166 return _stethToWsteth(amount);
167 }

Figure 3.1: The _ethToWstEth function in TreehouseRouter.sol

It would be safer to not rely on the assumption that stETH equals ETH.

Recommendations
Short term, update the implementation to pass the stETH amount instead of the ETH
amount into the _stethToWsteth function. Take into account that WstEth.wrap expects
“stETH amount” instead of “stETH shares.”

Long term, do not rely on assumptions when it is possible to circumvent the reliance on
such assumptions. This would result in fewer possible surprises once such assumptions no
longer hold, which could cause severe problems for the protocol.

Trail of Bits 19 Treehouse tETH Security Assessment
PUBLIC



4. Single-asset vault is not a single-asset vault

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-TETH-4

Target: contracts/Vault.sol

Description
According to the Treehouse team, the Vault is a single-asset vault:

we went from multiple assets within a single vault, to multiple vaults w/ a single asset.

However, the current Vault is not a single-asset vault, as demonstrated by the presence of
functions to control the “allowed assets” in the Vault contract.

142 function addAllowableAsset(address _asset) external onlyOwner {
143 if (IERC20Metadata(_asset).decimals() > 18) revert UnsupportedDecimals();
144 RATE_PROVIDER_REGISTRY.checkHasRateProvider(_asset);
145
146 bool success = _allowableAssets.add(_asset);
147 if (!success) revert Failed();
148 emit AllowableAssetAdded(_asset);
149 }

Figure 4.1: The addAllowableAsset function in Vault.sol

Although this does not pose an immediate security risk, we do want to highlight this issue,
as it complicates the Vault compared to an actual “single-asset vault.”

Recommendations
Consider converting all assets (for example, in the TreehouseRouter) to a single
underlying asset, and only allow that asset to be deposited into the Vault. This way the
Vault could be a true “single-asset vault.”

Trail of Bits 20 Treehouse tETH Security Assessment
PUBLIC



5. Dangerous storage variable in Strategy contract due to use of delegatecall

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-TETH-5

Target: contracts/strategy/Strategy.sol

Description
The Strategy contract contains a single storage variable (strategyExecutor). Because
the implementation uses a (double) delegatecall, it takes only one mistake in the enabled
Action contracts to overwrite this very important storage variable. Currently, none of the
Action contracts have a storage variable, so this is not currently an issue. However, when
adding new Actions in the future, such an action might accidentally contain a storage
variable.

26 address public strategyExecutor;

Figure 4.1: The strategyExecutor variable in Strategy.sol

The strategyExecutor storage variable contains the address of the account that is
allowed to initiate action executions. If this variable ever gets overwritten, access to the
actions and all of the assets within external protocols could be lost.

The use of delegatecall is generally discouraged due to the security risks it poses. The most
important risk is accidentally and incorrectly overwriting storage variables in the initiating
contract from within the contracts called through delegatecall. To protect against
overwriting variables this way the recommendation is to not have any storage variables
(declared in the traditional sense) in the initiating contract. The Strategy contract (the
initiating contract) however does contain a single storage variable, and it is a very
important one that determines who can initiate all of the actions.

None of the actions that currently exist in the repository declare any storage variables. In
case a new action is added which does have a storage variable, then writing to this storage
variable would result in overwriting the strategyExecutor storage variable.

Exploit Scenario
A new action is added that includes a storage variable. Upon execution of this new action
the strategyExecutor address is overwritten to have a value of zero. None of the actions
can now be called again since the account allowed to do so is address zero.

Trail of Bits 21 Treehouse tETH Security Assessment
PUBLIC



Recommendations
Short term, remove the strategyExecutor storage variable from the Strategy contract.
In its place, declare an immutable variable that contains the address of the
StrategyStorage contract. Within the StrategyStorage contract, add functionality to
store and retrieve the strategyExecutor. Doing this will result in the Strategy contract
no longer having any storage variables.

Long term, consider rewriting the implementation to use regular calls instead of
delegatecalls. This would remove all of the dangers of using delegatecall.

Trail of Bits 22 Treehouse tETH Security Assessment
PUBLIC



6. Missing return value check can lead to incorrect event emission

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-TETH-6

Target: contracts/strategy/StrategyStorage.sol

Description
The return value of the EnumerableSet.add function is not validated. As a result, having
duplicates within _allowedActions or _allowedAssets does not result in a revert.
Instead, the call will succeed and emit the StrategyCreated event with duplicate values
within the _allowedAssets and/or _allowedActions event fields. This issue has no
other effects besides an incorrect event emission.

67 function storeStrategy(
68 address _strategy,
69 bytes4[] calldata _allowedActions,
70 address[] calldata _allowedAssets
71 ) external onlyOwner returns (uint _strategyIndex) {
72 if (strategies.add(_strategy) == false) revert AlreadyExist();
73 _strategyIndex = strategies.length() - 1;
74
75 for (uint i; i < _allowedActions.length; ) {
76 parameters[_strategy].whitelistedActions.add(_allowedActions[i]);
77
78 unchecked {
79 ++i;
80 }
81 }
82
83 for (uint i; i < _allowedAssets.length; ) {
84 parameters[_strategy].whitelistedAssets.add(_allowedAssets[i]);
85
86 unchecked {
87 ++i;
88 }
89 }
90
91 parameters[_strategy].isActive = true;
92
93 emit StrategyCreated(_strategyIndex, _allowedAssets, _allowedActions);
94 }

Figure 6.1: The storeStrategy function in StrategyStorage.sol

Trail of Bits 23 Treehouse tETH Security Assessment
PUBLIC



Figure 6.2 shows that the add function (and the _add function) in the EnumerableSet
library returns a Boolean indicating if the addition was successful. If, for example, the
addition failed because that value was already in the set, the add function will return
false.

function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));

}

function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {

set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;

} else {
return false;

}
}

Figure 6.2: The add and _add functions in OpenZeppelin’s EnumerableSet.sol

Recommendations
Short term, validate the return value of the call to EnumerableSet.add. Have it revert if
the value is false.

Long term, read the source code of all external libraries/contracts to know how to write
correct integrations. This helps to ensure error-free usage of external libraries and
contracts.

Trail of Bits 24 Treehouse tETH Security Assessment
PUBLIC

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dbb6104ce834628e473d2173bbc9d47f81a9eec3/contracts/utils/structs/EnumerableSet.sol


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 25 Treehouse tETH Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 26 Treehouse tETH Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Trail of Bits 27 Treehouse tETH Security Assessment
PUBLIC



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 28 Treehouse tETH Security Assessment
PUBLIC



C. Code Quality Recommendations

The following recommendations are not associated with any specific vulnerabilities.
However, they will enhance code readability and may prevent the introduction of
vulnerabilities in the future.

● Change the inheritance order to remove unnecessary overriding of
transferOwnership and _transferOwnership. Several contracts override these
two functions, which are originally defined in the Ownable and Ownable2Step
contracts. Changing the inheritance order should eliminate the need to override
these two functions.

176 function transferOwnership(address newOwner) public virtual
override(Ownable2Step, Ownable) onlyOwner {

177 super.transferOwnership(newOwner);
178 }
179
180 function _transferOwnership(address newOwner) internal virtual

override(Ownable2Step, Ownable) {
181 super._transferOwnership(newOwner);
182 }

Figure C.1: An example of overriding the transferOwnership and _transferOwnership
functions in TreehouseRouter.sol)

● Remove unnecessary if statement. Line 94 in figure C.2 contains an if check
that will always be true. This is due to a check on the first line in this function that
will revert the call if _newRedemption == address(0). Therefore, this if clause
will never be false.

94 if (_newRedemption != address(0)) {
95 IERC20(getUnderlying()).approve(_newRedemption, type(uint).max);
96 }

Figure C.2: Excerpt from the setRedemption function in Vault.sol

● Normalize all immutable variables by making them uppercase. Most immutable
variables throughout the codebase are uppercased. However, some are not. We
recommend also uppercasing these:

20 address public immutable wstETH;

Figure C.3: Immutable variable whose name is not uppercased in PnlAccountingHelper.sol

28 AggregatorV3Interface public immutable pricefeed;
29

Trail of Bits 29 Treehouse tETH Security Assessment
PUBLIC



30 // Rate providers are expected to respond with a fixed-point value with 18
decimals
31 // We then need to scale the price feed's output to match this.
32 uint256 internal immutable _scalingFactor;

Figure C.4: Immutable variables whose name is not uppercased in
ChainlinkRateProvider.sol

25 IwstETH public immutable wstETH;
26 IRateProvider public immutable stethRateProvider;

Figure C.5: Immutable variables whose name is not uppercased in WstETHRateProvider.sol

25 address public immutable vault;

Figure C.6: Immutable variable whose name is not uppercased in Strategy.sol

● Update incorrect comment. The comment indicates this is the wstETH interface,
but it is the stETH (=Lido) interface.

4 /// @dev https://docs.lido.fi/contracts/wsteth

Figure C.7: Incorrect comment in IstETH.sol

● Update confusing struct field name. The asset field in the RedemptionInfo
struct holds the amount of assets. The current name is confusing, as it sounds like
this field holds the address of the asset, not the amount of assets. We recommend
updating the name to assets.

35 uint128 asset;

Figure C.8: asset field of the RedemptionInfo struct in TreehouseRedemption.sol

● Simplify code in redeem function. The previewRedeem function internally simply
calls convertToAssets. Therefore, this process could be made simpler and more
gas efficient by first calling previewRedeem, and using the returned assets amount
to perform the check that is currently performed on line 79.

79 if (IERC4626(TASSET).convertToAssets(_shares) < minRedeemInEth) revert
MinimumNotMet();
80
81 IERC20(TASSET).safeTransferFrom(msg.sender, address(this), _shares);
82
83 uint128 _assets = IERC4626(TASSET).previewRedeem(_shares).toUint128();

Figure C.9: Excerpt from the redeem function in TreehouseRedemption.sol

● Remove unchecked for-loop increments. Since Solc 0.8.22; the compiler
automatically does this (under certain circumstances); since this project uses Solc
0.8.24, these increments can be removed from the implementation.

Trail of Bits 30 Treehouse tETH Security Assessment
PUBLIC

https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/


83 for (uint i; i < _allowedAssets.length; ) {
84 parameters[_strategy].whitelistedAssets.add(_allowedAssets[i]);
85
86 unchecked {
87 ++i;
88 }
89 }

Figure C.10: Example use of unchecked for-loop increments in StrategyStorage.sol

Trail of Bits 31 Treehouse tETH Security Assessment
PUBLIC



D. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On September 25, 2024, Trail of Bits reviewed the fixes and mitigations implemented by the
Treehouse team for the issues identified in this report. We reviewed each fix to determine
its effectiveness in resolving the associated issue.

We performed the audit on the 0xhypn/tETH private repo at commit
60c4c39c800d280057fefe2ce1945f61c0dc795d. The fixes were then applied to the
0xhypn/tETH repo with one commit per issue fix. We reviewed each of these commits
specifically, and from that generated the below Detailed Fix Review Results.

After our review of the fixes, the Treehouse team performed updates to the NavHelper
contract. We did not review these changes.

The Treehouse team also decided to create a new “clean” GitHub repository,
treehouse-gaia/tETH, that contains a single commit with the final version of the
codebase after all of our fixes were applied, as well as Treehouse’s changes to the
NavHelper contract. This fix review appendix will therefore link to the commit (459ccb1) in
this new repository.

In summary, of the six issues described in this report, Treehouse has resolved four issues
and has not resolved the remaining two issues. For additional information, please see the
Detailed Fix Review Results below.

Trail of Bits 32 Treehouse tETH Security Assessment
PUBLIC

https://github.com/treehouse-gaia/tETH/tree/459ccb1f8a2c7e28c1bff637233bd8051a012f50
https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50


ID Title Status

1 Anyone can steal wstETH tokens accidentally transferred to the
TreehouseRouter contract

Resolved

2 Underlying tokens can be “rescued” Unresolved

3 WstEth.wrap expects stETH amount instead of ETH amount Resolved

4 Single-asset vault is not a single-asset vault Unresolved

5 Dangerous storage variable in Strategy contract due to use of
delegatecall

Resolved

6 Missing return value check might lead to incorrect event emission Resolved

Detailed Fix Review Results

TOB-TETH-1: Anyone can stealwstETH tokens accidentally transferred to the
TreehouseRouter contract
Resolved in commit 459ccb1. The implementation was updated to return the return value
of the wstEth.wrap call instead of returning the wstEth balance of the contract itself. By
doing this, only tokens belonging to the caller will be used for the deposit.

TOB-TETH-2: Underlying tokens can be “rescued”
Unresolved in commit 459ccb1. The client provided the following context for not fixing this
issue:

TOB-TETH-2: a centralization risk and we acknowledge it as such - it's conceptually no
different to another EOA with privileged access.

TOB-TETH-3:WstEth.wrap expects stETH amount instead of ETH amount
Resolved in commit 459ccb1. The implementation was updated to pass the stEth
amount, converted from the returned number of shares that were minted in the
stEth.submit call.

TOB-TETH-4: Single-asset vault is not a single-asset vault
Unresolved in commit 459ccb1. The client provided the following context for not fixing this
issue:

Trail of Bits 33 Treehouse tETH Security Assessment
PUBLIC

https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50
https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50
https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50
https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50


TOB-TETH-4: is informational, and a subjective opinion on a certain design aspect. To
accommodate that would mean making material changes to the codebase, with no
corresponding benefit

TOB-TETH-5: Dangerous storage variable in Strategy contract due to use of
delegatecall
Resolved in commit 459ccb1. The strategyExecutor storage variable was removed from
the Strategy contract. In its place, an immutable variable holding the address of the
StrategyStorage contract was added. The StrategyStorage contract was updated to
include the strategyExecutor storage variable, and functionality for changing and
retrieving this value was added.

TOB-TETH-6:Missing return value check might lead to incorrect event emission
Resolved in commit 459ccb1. The implementation was updated to check the return value
of the EnumerableSet.add function. In the case that it is false, the execution is reverted.

Trail of Bits 34 Treehouse tETH Security Assessment
PUBLIC

https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50
https://github.com/treehouse-gaia/tETH-protocol/commit/459ccb1f8a2c7e28c1bff637233bd8051a012f50

